Induksi Somatic Embriogenesis dan Kultur Suspensi Sel Pada Tanaman Porang (Amorphophallus muelleri Blume)

Authors

DOI:

10.25047/agriprima.v6i2.448

Issue:

Vol. 6 No. 2 (2022): SEPTEMBER

Keywords:

NAA, Cell suspension culture, Somatic embryogenesis (SE), porang
Received: Dec 07, 2021
Accepted: Jun 04, 2022
Published: Sep 30, 2022

Articles

How to Cite

Restanto, D. P., Farlisa, V. Y., Dewanti, P., Hariyono, K., & Handoyo, T. (2022). Induksi Somatic Embriogenesis dan Kultur Suspensi Sel Pada Tanaman Porang (Amorphophallus muelleri Blume). Agriprima : Journal of Applied Agricultural Sciences, 6(2), 111–123. https://doi.org/10.25047/agriprima.v6i2.448

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Porang adalah tanaman yang tumbuh di daerah  tropis dibawah tegakan hutan. Porang termasuk tanaman komersial banyak diminati oleh masyarakat karena mengandung glukomanan yang cukup tinggi. Kebutuhan bibit melalui katak dan umbi relative mahal dalam budidaya porang sehingga dengan pendekatan kultur jaringan melalui Somatic Embryogenesis (SE) dan suspensi sel untuk perbanyakan masal bibit porang sangat memungkinkan.  Hasil SE digunakan untuk kultur suspensi sel agar menghasilkan bibit dalam jumlah banyak. Penelitian ini bertujuan untuk menghasilkan SE dalam jumlah banyak sebagai bahan kultur suspensi sel. Perbanyakan SE menggunakan Rancangan Acak lengkap (RAL) factorial, factor pertama konsentrasi NAA dengan konsentrasi 0,5 ppm, 1 ppm, dan 1,5 ppm. Factor kedua konsentrasi 2,4-D konsentrasi 1 ppm dan 2 ppm sehingga terdapat 6 kombinasi perlakuan diulang sebanyak 4 kali. Hasil SE terbaik selanjutnya dikultur suspensi sel menggunakan hormon NAA 0,25 ml di-shaker selama 8 minggu diinkubasi pada kondisi gelap. Parameter pengamatan terdiri dari kedinian munculnya kalus, persentase kalus, struktur, warna kalus, proliferasi kalus, histologi kalus, respon hasil suspensi, proliferasi kalus hasil kultur suspensi.  Data dianalisis menggunakan DMRT pada taraf 5%, sedangkan parameter suspensi sel dianalisis secara deskriptif. Hasil penelitian SE terbaik pada perlakuan kombinasi 1 ppm NAA + 2 ppm 2,4-D menghasilkan persentase kalus tertinggi yaitu 90%, warna kalus dengan skoring 5Y 8/6 berwarna putih susu yang remah. Hasil kultur suspensi menggunakan hormon NAA dengan konsesntrasi 0,25 ppm menunjukkan pertumbuhan kalus tertinggi yaitu dengan menghitung volume endapan kalus terjadi pada fase eksponensial (7 minggu inkubasi) mencapai 3,67 ml. 

References

Alfian, F. N., Afdhoria, N. N., Dewanti, P., Restanto, D. P., & Sugiharto, B. (2019). Full Length Article Liquid Culture of Somatic Embryogenesis Cell Proliferation of Liquid Culture of Somatic Embryogenesis Cell Proliferation of Sugarcane ( Saccharum officinarum ). June. https://doi.org/10.17957/IJAB/15.0974

Bhati, A., Singh, D., Garg, S., & Sivalingam, P. N. (2017). Effect of 2 , 4-D and NAA on callus induction in date palm cv Halawy and Medjool Effect of 2 , 4-D and NAA on callus induction in date palm cv Halawy and Medjool. January. doi: 10.3923/pjbs.2017.20.27

Budisantoso, I., Amalia, N., & Kamsinah, K. (2017). In Vitro Callus Induction from Leaf Explants of Vanda sp Stimulated by 2,4-D. Biosaintifika: Journal of Biology & Biology Education, 9(3), 492. https://doi.org/10.15294/biosaintifika.v9i3.11018

Carsono, N., Juwendah, E., Liberty, Sari, S., Damayanti, F., & Rachmadi, M. (2021). Optimize 2,4-D concentration and callus induction time enhance callus proliferation and plant regeneration of three rice genotypes. Biodiversitas, 22(7), 2555–2560. https://doi.org/10.13057/biodiv/d220702

Chotigamas, T., Sripaoraya, S., Gateprasert, M., Vanichsriratana, W., & Sirisansaneeyakul, S. (2009). The tissue culture optimization for Amorphoplallus oncophyllus cell suspensionfor konjac glucomannan production. : : Https://Www.Researchgate.Net/Publication/267685813 THE, 1–7.

Dragi, M. B., & Simonovi, A. D. (2021). Secondary Somatic Embryogenesis in Centaurium erythraea Rafn. https://doi.org/10.3390/plants10020199

Egertsdotter, U. (2019). Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scandinavian Journal of Forest Research, 34(5), 360–369. https://doi.org/10.1080/02827581.2018.1441433

Faisal, M., Abdel-salam, E. M., Alatar, A. A., & Qahtan, A. A. (2021). Saudi Journal of Biological Sciences Induction of somatic embryogenesis in Brassica juncea L . and analysis of regenerants using ISSR-PCR and flow cytometer. Saudi Journal of Biological Sciences, 28(1), 1147–1153. https://doi.org/10.1016/j.sjbs.2020.11.050

Gatica-Arias, A., Vargas-Corrales, K., Benavides-Acevedo, M., Bolívar-González, A., Sánchez-Chacón, E., García-Díaz, E., Delgado-Rodríguez, F., Weng Huang, N. T., Hegele, M., Jens-Norbert, W., & Valdez-Melara, M. (2019). Morphological and biochemical changes during somatic embryogenesis in mahogany, swietenia macrophylla (meliaceae). Revista de Biologia Tropical, 67(3), 406–418. https://doi.org/10.15517/rbt.v67i3.34172

Hapsoro, D., Hamiranti, R., & Yusnita, Y. (2020). In vitro somatic embryogenesis of superior clones of robusta coffee from lampung, indonesia: Effect of genotypes and callus induction media. Biodiversitas, 21(8), 3811–3817. https://doi.org/10.13057/biodiv/d210849

Ibrahim, M. S. D., Hartati, R. R. S., Rubiyo, R., Purwito, A., & Sudarsono, S. (2016). The Induction of Primary and Secondary Somatic Embryo to Support Arabica Coffee Propagation. Journal of Tropical Crop Science, 2(3), 6–13. https://doi.org/10.29244/jtcs.2.3.6-13

Junairiah, Sofiana, D. A., Wulan Manuhara, Y. S., & . S. (2018). Induksi Kalus Piper retrofractum Vahl. dengan Zat Pengatur Tumbuh Auksin dan Sitokinin. Journal of Pharmacy and Science, 3(2), 41–46. https://doi.org/10.53342/pharmasci.v3i2.116

Liang, H., Xiong, Y., Guo, B., Yan, H., Jian, S., Ren, H., Zhang, X., Li, Y., Zeng, S., Wu, K., Zheng, F., Teixeira da Silva, J. A., Xiong, Y., & Ma, G. (2020). Shoot organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-68084-1

Marlin. (2012). Effect of 2,4-D and NAA on callus induction in date palm cv Halawy and Medjool. J. Agrivigor, 11(2), 275–283. doi: 10.3923/pjbs.2017.20.27

Maulida, D., Rugayah, & Andalasari, D. (2013). Pengaruh Pemberian Iba ( Indole Butyric Acid ) dan Konsentrasi Naa ( Naphthalene Acetic Acid ) terhadap Keberhasilan Penyetekan Sirih Merah ( Piper Crocatum Ruiz and Pav .) Effect Iba ( Indole Butyric Acid ) and Naa Concentration ( Naphthalene Acetic Acid. Penelitian Pertanian Terapan, 13(3), 151–158.

Nic-Can, G. I., López-Torres, A., Barredo-Pool, F., Wrobel, K., Loyola-Vargas, V. M., Rojas-Herrera, R., & De-la-Peña, C. (2013). New Insights into Somatic Embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 Are Epigenetically Regulated in Coffea canephora. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072160

Ramulifho, E., Goche, T., Van As, J., Tsilo, T. J., Chivasa, S., & Ngara, R. (2019). Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor (L.) Moench Varieties: A resource for gene discovery in plant stress biology. Agronomy, 9(5). https://doi.org/10.3390/agronomy9050218

Rasud, Y., & Bustaman, B. (2020). In Vitro Callus Induction from Clove (Syzigium aromaticum L.) Leaves on Medium Containing Various Auxin Concentrations. Jurnal Ilmu Pertanian Indonesia, 25(1), 67–72. https://doi.org/10.18343/jipi.25.1.67

Reflini, R. (2017). Evaluation of 2.4-D and NAA Concentrations for Callus and Somatic Embryos Formation in Oil Palm. Journal of Advanced Agricultural Technologies, 4(3), 215–218. https://doi.org/10.18178/joaat.4.3.215-218

Restanto, D. P., Kriswanto, B., Iqmatullah, N., & Dewanti, P. (2021). Pengaruh Naphthalene Acetic Acid (NAA) dan Kinetin terhadap Perkembangan Protocorm-Like Body (PLB) dan Regenerasi Anggrek Phalaenopsis sp. Hybrid. Agrikultura, 32(2), 93. https://doi.org/10.24198/agrikultura.v32i2.32095

Santos-Ballardo, D. U., Germán-Báez, L. J., Ambriz-Pérez, D. L., Meza-Ayala, K. A., Luna-Avelar, K. D., & Valdez-Ortiz, A. (2019). Optimizing the particle bombardment conditions in cell suspension cultures of Nicotiana tabacum and expression of the recombinant antihypertensive amarantin. South African Journal of Botany, 125, 329–336. https://doi.org/10.1016/j.sajb.2019.07.037

Santosa, E., Lian, C. L., Sugiyama, N., Misra, R. S., Boonkorkaew, P., & Thanomchit, K. (2017). Population structure of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) in Asia. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0180000

Thorat, A. S., Sonone, N. A., Choudhari, V. V., Devarumath, R. M., & Babu, K. H. (2017). Plant regeneration from cell suspension culture in Saccharum officinarum L. and ascertaining of genetic fidelity through RAPD and ISSR markers. 3 Biotech, 7(1), 1–12. https://doi.org/10.1007/s13205-016-0579-3

Zhong, L., Liu, E., Yang, C., Jin, S., Diao, Y., & Hu, Z. (2017). High embryogenic ability and regeneration from floral axis of Amorphophallus konjac (Araceae). Open Life Sciences, 12(1), 34–41. https://doi.org/10.1515/biol-2017-0004

Author Biographies

Didik Pudji Restanto, Universitas Jember

Veronenci Yuliarbi Farlisa, Universitas Jember

Parawita Dewanti, Universitas Jember

Kacung Hariyono, Universitas Jember

Tri Handoyo, Universitas Jember

License

Copyright (c) 2022 Didik Pudji Restanto, Veronenci Yuliarbi Farlisa, Parawita Dewanti, Kacung Hariyono, Tri Handoyo (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

You are free to:

  • Share — copy and redistribute the material in any medium or format.
  • Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

  • Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
  • No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>