Temperature, Relative Humidity and Photosynthetic Photon Flux Density Affects the Growth of Phyllanthus niruri L. Seedling

Authors

Mohamad Khrisna Adi Prabowo , Irna Suryana Bidara , Siti Himawati , Eka Nurhangga , Rina Aprianti , Dwi Pangesti Handayani , Rizki Dwi Satrio , Winda Nawfetria

DOI:

10.25047/agriprima.v8i2.673

Issue:

Vol. 8 No. 2 (2024): SEPTEMBER

Keywords:

Meniran, Microclimate, temperature, photosynthetic photon flux density, relative humidity
Received: Jul 06, 2024
Accepted: Sep 23, 2024
Published: Sep 30, 2024

Articles

Downloads

How to Cite

Adi Prabowo, M. K., Irna Suryana Bidara, Siti Himawati, Eka Nurhangga, Rina Aprianti, Dwi Pangesti Handayani, … Winda Nawfetria. (2024). Temperature, Relative Humidity and Photosynthetic Photon Flux Density Affects the Growth of Phyllanthus niruri L. Seedling. Agriprima : Journal of Applied Agricultural Sciences, 8(2). https://doi.org/10.25047/agriprima.v8i2.673

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

In order to obtain high-quality seedlings, the effects of temperature, relative humidity, and photosynthetic photon flux density (PPFD), the seed of Phyllanthus niruri L. (meniran) were investigated in different microclimate (temperature, relative humidity, PPFD) environments. The present study was conducted from February to May 2024 at the experimental greenhouse and screen house of the National Research and Innovation Agency, Banten, Indonesia. Microclimate parameters were observed thrice daily at 8 am, 12 pm, and 3 pm during the research. The two environments significantly differ in microclimate. The average temperatures, relative humidity, and PPFD of environment 1 are 35.30±5.04 oC, 60.95±17.40%, and 483.33±406.00 µmol m-2 S-1, while environment 2 are 33.07±4.84 oC, 70.47±16.63% and 356.4±339.55 µmol m-2 S-1. All treatments were repeated 18 times. After the 21-day treatment during the seedling stage, P. niruri seedlings were observed, including the germination rate, number of leaves, shoot length, and chlorophyll content index. Results showed that the germination rate, leaves, shoot length, and chlorophyll content index significantly differ between P. niruri seedlings in both environments. Phyllanthus niruri that grow in environment 1 have a higher germination rate than in environment 2, likewise, the number of leaves, shoot length, and chlorophyll content index. This initial research showed that P. niruri seedling grows better in an environment with temperature, relative humidity, and PPFD, respectively 35.30±5.04 oC, 60.95±17.40%, and 483.33±406.00 µmol m-2 S-1.

References

Allen, Leon Hartwell, Lingxiao Zhang, Kenneth J. Boote, and Bernard A. Hauser. 2018. Elevated Temperature Intensity, Timing, and Duration of Exposure Affect Soybean Internode Elongation, Mainstem Node Number, and Pod Number per Plant. Crop Journal 6 (2): 148–61. https://doi.org/10.1016/j.cj.2017.10.005.

Amitrano, Chiara, Carmen Arena, Stefania De Pascale, and Veronica De Micco. 2020. Light and Low Relative Humidity Increase Antioxidants Content in Mung Bean (Vigna Radiata l.) Sprouts. Plants 9 (9): 1–17. https://doi.org/10.3390/plants9091093.

Assefa, Abebe, and Amisalu Gobena. 2019. Review on Effect of Shade Tree on Microclimate, Growth and Physiology of Coffee Arabica: In Case of Ethiopia. International Journal of Forestry and Horticulture 5 (3): 31–46. https://doi.org/10.20431/2454-9487.0503004.

Dumitrescu, Ionel Lucian, and Adrian Gabriel Ghiaus. 2019. An Overview of the Microclimate Conditions inside Healing Chambers. E3S Web of Conferences 85: 1–6. https://doi.org/10.1051/e3sconf/20198501009.

Dusenge, Mirindi Eric, André Galvao Duarte, and Danielle A. Way. 2019. Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynthesis, Photorespiration and Respiration. New Phytologist 221 (1): 32–49. https://doi.org/10.1111/nph.15283.

Grossnickle, Steven C., and Joanne E. MacDonald. 2018. Why Seedlings Grow: Influence of Plant Attributes. New Forests 49 (1): 1–34. https://doi.org/10.1007/s11056-017-9606-4.

Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson. 2011. Multivariate Data Analysis. 7th ed. Pearson Prentice Hall.

Hanley, M. E., M. Fenner, H. Whibley, and B. Darvill. 2004. Early Plant Growth: Identifying the End Point of the Seedling Phase. New Phytologist 163 (1): 61–66. https://doi.org/10.1111/j.1469-8137.2004.01094.x.

Khoirunisa, Icha, Budiman, and Ratih Kurniasih. 2021. PENGARUH KADAR AIR TANAH TERSEDIA DAN PENGELOLAAN PUPUK TERHADAP PERTUMBUHAN MENIRAN (Phyllanthus Niruri) Effect. Jurnal Pertanian Presisi 5 (2): 138–46. https://doi.org/10.31857/s0869803121030085.

Kingra, Pavneet Kaur, and Harleen Kaur. 2017. Microclimatic Modifications to Manage Extreme Weather Vulnerability and Climatic Risks in Crop Production. Journal of Agricultural Physics 17 (1): 1–15. http://www.agrophysics.in.

Lee, Nathanael Y.S., William K.S. Khoo, Mohammad Akmal Adnan, Tanes Prasat Mahalingam, Anne R. Fernandez, and Kamalan Jeevaratnam. 2016. The Pharmacological Potential of Phyllanthus Niruri. Journal of Pharmacy and Pharmacology 68: 953–69. https://doi.org/10.1111/jphp.12565.

Listyana, Nurul Husniyati, Rahma Widyastuti, and Widyantoro Widyantoro. 2019. “PENGARUH WADAH, SUHU DAN WAKTU SIMPAN TERHADAP PERKECAMBAHAN BENIH MENIRAN (Phyllanthus Niruri L.).” Jurnal Tumbuhan Obat Indonesia 12 (2): 75–82. https://doi.org/10.22435/jtoi.v12i2.1126.

Mao, Xin, Ling Fang Wu, Hong Ling Guo, Wen Jing Chen, Ya Ping Cui, Qi Qi, Shi Li, et al. 2016. The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. Evidence-Based Complementary and Alternative Medicine 2016. https://doi.org/10.1155/2016/7584952.

Massacci, A., F. Pietrini, M. Centritto, and F. Loreto. 2000. Microclimate Effects on Transpiration and Photosynthesis of Cherry Saplings Growing under a Shading Net. Acta Horticulturae 537 (October 2000): 287–91. https://doi.org/10.17660/actahortic.2000.537.32.

Minotta, Gianfranco, and Simone Pinzauti. 1996. Effects of Light and Soil Fertility on Growth, Leaf Chlorophyll Content and Nutrient Use Efficiency of Beech (Fagus Sylvatica L.) Seedlings. Forest Ecology and Management 86 (1–3): 61–71. https://doi.org/10.1016/S0378-1127(96)03796-6.

Nawfetrias, Winda, Eka Nurhangga, Rina Aprianti, Siti Himawati, Abdul Wakhid Shodiq, Iskandar Zulkarnaen, Lukita Devy, Rizkita Rachmi Esyanti, and Ahmad Faizal. 2024. Drought Stress Response in Phyllanthus Niruri L.: A Potentially Medicinal Plant. AIP Conference Proceedings 2957 (1). https://doi.org/10.1063/5.0183955.

Paithankar, V V, KS Raut, RM Charde, and JV Vyas. 2011. Phyllanthus Niruri: A Magic Herb. Research in Pharmacy 1 (4): 1–9. www.researchinpharmacy.com.

Rabbi, Barkat, Zhong Hua Chen, and Subbu Sethuvenkatraman. 2019. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies 12 (14). https://doi.org/10.3390/en12142737.

Rusmana, Djaja, Roro Wahyudianingsih, Mariska Elisabeth, Balqis, Maesaroh, and Wahyu Widowati. 2017. Antioxidant Activity of Phyllanthus Niruri Extract, Rutin and Quercetin. Indonesian Biomedical Journal 9 (2): 84–90. https://doi.org/10.18585/inabj.v9i2.281.

Sarkar, Soma Das, Uttam Kumar Sarkar, Malay Naskar, Koushik Roy, Arun Kumar Bose, Subir Kumar Nag, Gunjan Karnatak, and Basanta Kumar Das. 2021. Effect of Climato-Environmental Parameters on Chlorophyll a Concentration in the Lower Ganga Basin, India. Revista de Biologia Tropical 69 (1): 60–76. https://doi.org/10.15517/RBT.V69I1.42731.

Shamshiri, Redmond Ramin, James W. Jones, Kelly R. Thorp, Desa Ahmad, Hasfalina Che Man, and Sima Taheri. 2018. Review of Optimum Temperature, Humidity, and Vapour Pressure Deficit for Microclimate Evaluation and Control in Greenhouse Cultivation of Tomato: A Review. International Agrophysics 32 (2): 287–302. https://doi.org/10.1515/intag-2017-0005.

Simlat, Magdalena, Patrycja Ślęzak, Maria Moś, Marzena Warchoł, Edyta Skrzypek, and Agata Ptak. 2016. The Effect of Light Quality on Seed Germination, Seedling Growth and Selected Biochemical Properties of Stevia Rebaudiana Bertoni. Scientia Horticulturae 211: 295–304. https://doi.org/10.1016/j.scienta.2016.09.009.

Susanti, Dian, and One Grahita Dinar Larasati. 2018. The Effect Composition of Plant Medium. Jurnal Pengembangan Penyuluhan Pertanian 15 (28): 1–9.

Talebi, Reza. 2011. Evaluation of Chlorophyll Content and Canopy Temperature as Indicators for Drought Tolerance in Durum Wheat (Triticum Durum Desf.). Australian Journal of Basic and Applied Sciences 5 (11): 1457–62.

Tambunan, Risma Marisi, Greesty Finotory Swandiny, and Sarah Zaidan. 2019. Uji Aktivitas Antioksidan Dari Ekstrak Etanol 70% Herba Meniran (Phyllanthus Niruri L.) Terstandar. Jurnal Ilmu Kefarmasian 12 (2): 60–64.

Xu, Yao, Chang Wang, Rui Zhang, Chunmei Ma, Shoukun Dong, and Zhenping Gong. 2021. The Relationship between Internode Elongation of Soybean Stems and Spectral Distribution of Light in the Canopy under Different Plant Densities. Plant Production Science 24 (3): 326–38. https://doi.org/10.1080/1343943X.2020.1847666.

Yu, Haibo, Haiye Yu, Bo Zhang, Meichen Chen, Yucheng Liu, and Yuanyuan Sui. 2023. Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate. Horticulturae 9 (6): 1–16. https://doi.org/10.3390/horticulturae9060660.

Zheng, Liang, Qi Zhang, Kexin Zheng, Shumei Zhao, Pingzhi Wang, Jieyu Cheng, Xuesong Zhang, and Xiaowen Chen. 2020. Effects of Diffuse Light on Microclimate of Solar Greenhouse, and Photosynthesis and Yield of Greenhouse-Grown Tomatoes. HortScience 55 (10): 1605–13. https://doi.org/10.21273/HORTSCI15241-20.

Author Biographies

Mohamad Khrisna Adi Prabowo, Universitas Pertahanan Republik Indonesia

Irna Suryana Bidara, Badan Riset dan Inovasi Nasional

Siti Himawati, Badan Riset dan Inovasi Nasional

Eka Nurhangga, Badan Riset dan Inovasi Nasional

Dwi Pangesti Handayani, Badan Riset dan Inovasi Nasional

Rizki Dwi Satrio, Indonesia Defense University

License

Copyright (c) 2024 Mohamad Khrisna Adi Prabowo, Irna Suryana Bidara, Siti Himawati, Eka Nurhangga, Rina Aprianti, Dwi Pangesti Handayani, Rizki Dwi Satrio, Winda Nawfetria (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

You are free to:

  • Share — copy and redistribute the material in any medium or format.
  • Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

  • Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
  • No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.